Detection of Multiple Deformable Objects using PCA-SIFT

نویسندگان

  • Stefan Zickler
  • Alexei A. Efros
چکیده

In this paper, we address the problem of identifying and localizing multiple instances of highly deformable objects in real-time video data. We present an approach which uses PCA-SIFT (Scale Invariant Feature Transform) in combination with a clustered voting scheme to achieve detection and localization of multiple objects while providing robustness against rapid shape deformation, partial occlusion, and perspective changes. We test our approach in two highly deformable robot domains and evaluate its performance using ROC (Receiver Operating Characteristic) statistics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

A Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models

Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis.  Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...

متن کامل

Matching method of partial shoeprint images based on PCA-SIFT algorithm

To improve the accuracy of image matching shoeprint image feature matching method based on PCA-SIFT is proposed. Firstly, feature detection and pre-matching of images are done by using PCA-SIFT (principal component analysisscale invariant feature transform) algorithm. And then, the correlation coefficient is used as similarity measurement, which can filter image interest points. By this method,...

متن کامل

A Comparison of SIFT, PCA-SIFT and SURF

This paper summarizes the three robust feature detection methods: Scale Invariant Feature Transform (SIFT), Principal Component Analysis (PCA)–SIFT and Speeded Up Robust Features (SURF). This paper uses KNN (K-Nearest Neighbor) and Random Sample Consensus (RANSAC) to the three methods in order to analyze the results of the methods’ application in recognition. KNN is used to find the matches, an...

متن کامل

Performance evaluation of block-based copy- move image forgery detection algorithms

Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007